Parallel antagonism of synaptic transmission and kainate/quisqualate responses in the hippocampus by piperazine-2,3-dicarboxylic acid analogs.

نویسندگان

  • A H Ganong
  • A W Jones
  • J C Watkins
  • C W Cotman
چکیده

A new series of potent antagonists of excitatory neurotransmission in the rat hippocampus has been identified. These derivatives of piperazine-2,3-dicarboxylate (PzDA) include the most potent acidic amino acid antagonists yet described for Schaffer collateral-commissural EPSPs. These antagonists also effectively block excitatory synaptic responses recorded in the lateral and medial perforant pathways and in the mossy fiber pathway. The PzDA derivatives also block focal depolarizations produced by kainate, quisqualate, and N-methyl-D-aspartate. N-methyl-D-aspartate responses are more susceptible to inhibition by PzDA derivatives, although the spectrum of antagonism of N-methyl-D-aspartate and synaptic responses by PzDA derivatives is not parallel. However, the antagonism of kainate and quisqualate responses by PzDA derivatives shows the same rank order of potency as synaptic responses. These data indicate that synaptic receptors in the hippocampus have a pharmacologic profile similar to that of kainate or quisqualate receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative physiological characterization of a quinoxalinedione non-NMDA receptor antagonist.

The effects of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, or FG 9065) on excitatory amino acid responses in cultured neurons from rat hippocampus were studied using tight-seal whole-cell recording techniques. CNQX reduced the magnitude of peak inward currents produced by exogenously applied kainate, quisqualate, and N-methyl-D-aspartate (NMDA) with Ki's of 2.5, 3.5, and 96 microM, respectively...

متن کامل

Amyloidogenicroleofcytokine TGF - b 1 in transgenicmiceand inAlzheimer ’ sdisease

NATURE | VOL 389 | 9 OCTOBER 1997 603 20. Korczak, B. et al. cDNA cloning and functional properties of human glutamate receptor EAA3 (GluR5) in homomeric and heteromeric configuration. Recept. Chann. 3, 41–49 (1995). 21. Huettner, J. E. Glutamate receptor channels in rat DRG neurons: Activation by kainate and quisqualate and blockade of desensitization by Con A. Neuron 5, 255–266 (1990). 22. Pa...

متن کامل

Blockade of excitatory synaptic transmission by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the hippocampus in vitro.

Superfusion of hippocampal slices with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 2-5 microM) reversibly blocked the Schaffer collateral and mossy fibre excitatory postsynaptic potential (EPSP), while sparing the fast and slow gamma-aminobutyric acid (GABA)-mediated inhibition. Membrane potential, input resistance and spike accommodation were not altered. Inward currents induced by quisqualate...

متن کامل

Excitatory amino acid neurotransmission at sensory-motor and interneuronal synapses of Aplysia californica.

1. Although the gill and siphon withdrawal reflex of Aplysia has been used as a model system to study learning-associated changes in synaptic transmission, the identity of the neurotransmitter released by the sensory neurons and excitatory interneurons of the network mediating this behavior is still unknown. The identification of the putative neurotransmitter of these neurons should facilitate ...

متن کامل

Synaptic potentials and effects of amino acid antagonists in the auditory cortex.

Neurons of in vitro guinea pig and rat auditory cortex receive a complex synaptic pattern of afferent information. As many as four synaptic responses to a single-stimulus pulse to the gray or white matter can occur; an early-EPSP followed, sequentially, by an early-IPSP, late-EPSP, and late-IPSP. Paired pulse stimulation and pharmacological studies show that the early-IPSP can modify informatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 1986